
Novel Self-expandable Stent Based Percutaneous Pulmonic Valve - Pre-clinical study -

Gi Beom Kim¹, Hong Gook Lim², Yong Jin Kim²

Department of Pediatrics¹, Thoracic and Cardiovascular Surgery² Seoul National University Children's Hospital Xenotransplantation Research Center Seoul, South Korea

Disclosure

- TaeWoong Medical Co., Ltd is supporting this study
- This study was supported by a grant of the Korea Health 21
 Research and Development Project, Ministry for Health,
 Welfare, and Family Affairs, Republic of Korea

(Project No.: A040004-006)

Problems of valved-stent in Korea

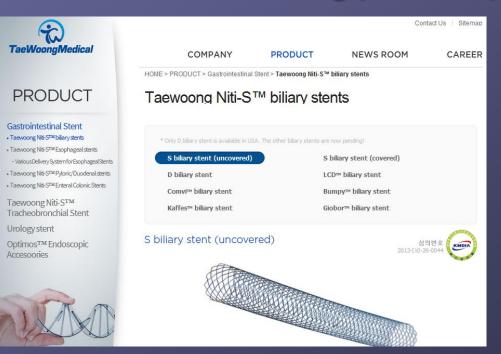
- Not available in Korea
- Too expensive: >30,000 Dollars/valve
- Too difficult to get Korean FDA approval
 - strict regulation for device importation

Melody valve

Edward-Sapien valve

Purpose of this study

 To see the feasibility of self-expandable valved-stent with Nitinol-wire backbone in pulmonic position


To see the durability of artificial valve for > 6 months

Materials and Method

• Stent using Nitinol-wire backbone

self-expandable

• Tissue valve using porcine pericardium

Tissue preservation for porcine pericardium

1. Decellularization with 0.25% SDS (sodium dodecyl sulfate)

2. 0.1 units/mL alpha-galactosidase treatment

(for reduction of immunogenicity)

3. Space filler with PEG (polyethylene glycol)

4. 0.5 % GA fixation with solvent (75% ethanol + 5% octanol)

5. Detoxification with 0.1M glycine

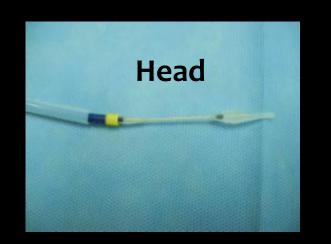
J Heart Valve Dis. 2012 May;21(3):387-97. Eur J Cardiothorac Surg. 2012 Feb;41(2):383-90.

Pulmonary valved-stent shape

Valve Diameter (mm)	Head Diameter (mm)	Height (mm)	Valve height (mm)
20.0	24.0	24	12.5
22.0	26.0	25	14.0
24.0	28.0	28	15.5
26.0	30.0	33	17.0
28.0	32.0	34	18.0

≻ Height : Valve diameter ≒ 1.2

Valve motion



In Vitro

In Vivo

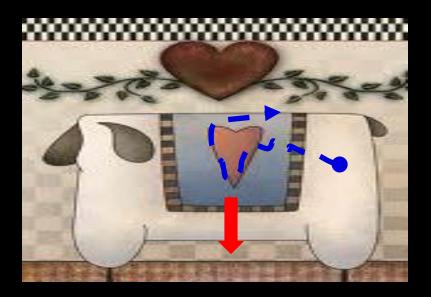
Trans-catheter delivery system

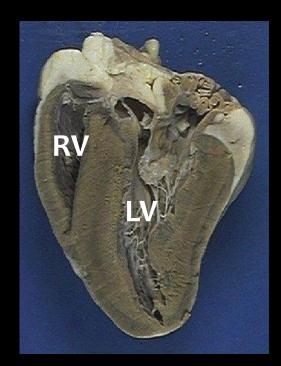
long delivery sheath

14Fr shaft

Animal

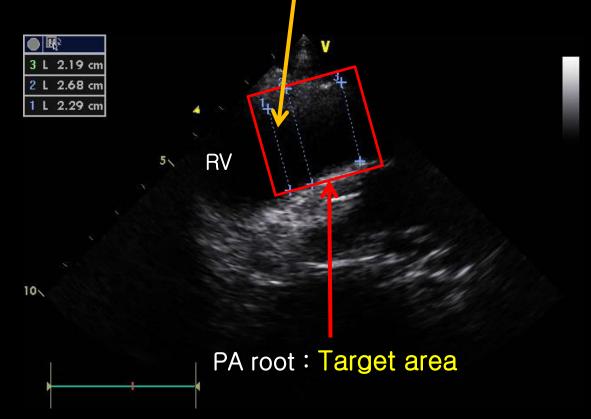
- Sheep : about 6 month-old
- Method
 - Under general anesthesia and mechanical ventilator
 - cut-down : inguinal area or cervical area
 - Femoral or Jugular vein : 6 Fr. short sheath,
 - Femoral or Carotid artery : 4 Fr. short sheath
 - Hemodynamic study and angiography at just below Pul. valve
 - 18 Fr. long delivery catheter exchange
 - Stent implantation with self-expandable method
 - Deployment under the guidance of C-arm and transthoracic echocardiography




Characteristics of heart and vessel of sheep

- Acute angle from RA to PA : apex of heart points the land
- Rather small RV with relatively large pulmonic valve annulus

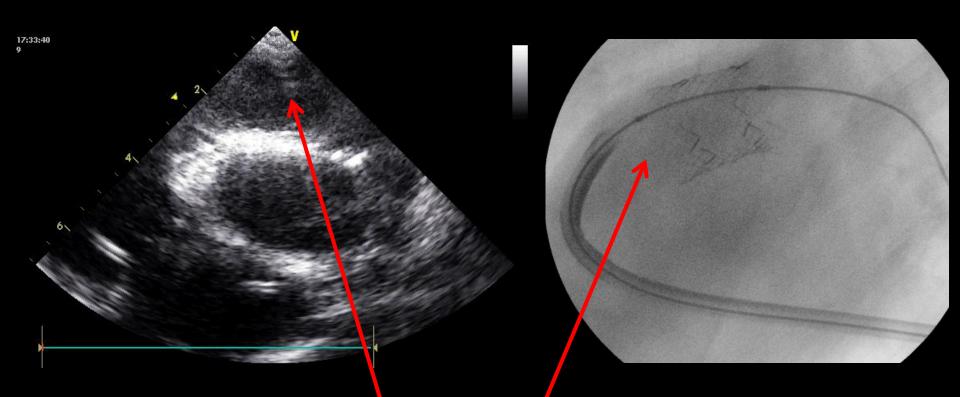
→ difficult to stent introduction from RA to PA


• Femoral vein is relatively small

Target area at echocardiogram

- Sheep, body weight : 35 kg
 - Pul. valve annulus : 22.9 mm
 - Femoral vein : 6.5 mm

Stent loading procedure

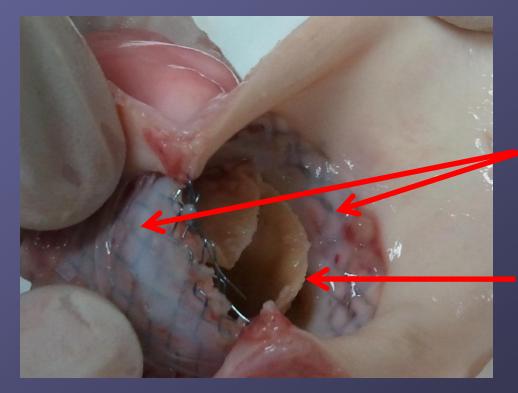


Deployment of Valved Stent

Pulmonary valved-stent implantation

Implanted stent's valve motion

- : good valve motion
- : good position at targeted area


F/U schedule

Echocardiography Procedure day 4-6 weeks later 6 months later before sacrifice • Cardiac cath. Procedure day 6 months later before sacrifice Sacrifice

6 months after initial implantation

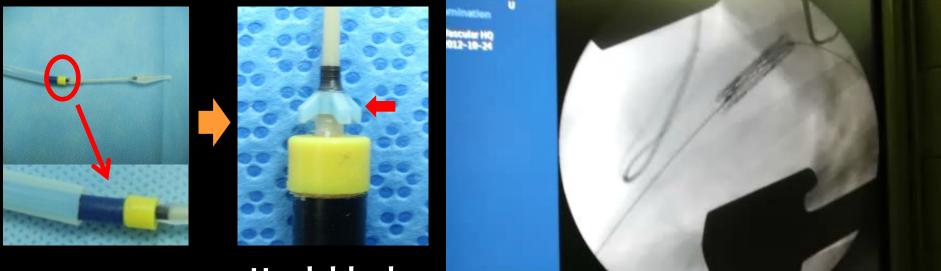
Autopsy findings – 4th sheep


- PV implantation : 26 mm at 2011.10.5
- General weakness from 2011.12. 2nd week
- Died at 2011.12.30
- Cause : unknown, R/O infection ?
- Last echocardiography at 2011.11.9 : trivial PR, no PS

Full endothelization after 3 months.

Rather thickened leaflets

6 Month F/U


Results

Sheep	B.Wt (Kg)	Stent (mm)	route	position	F/U (Mo)	result	valve function
1	34•5	24	FV	good	6	sacrificed	tissue loss
2	45	24	FV	MPA distal	6	sacrificed	attached to wall
3	51	26	FV	good	2.5		thick leaflet
4	45	26	FV	RVOT	6	sacrificed	attached to wall
5	47	26	FV	good	6	sacrificed	good
6	41	24	FV	good	6	sacrificed	good
7	39	24	JV	good	6	sacrificed	good
8	48	24	FV	RVOT	4		thick leaflet
9	39	24	FV	MPA distal	2		attached to wall
10	45	26	JV	good	4		tissue loss
11	40	24	JV	good	6	survive	good
12	53	26	٦V	good	6	survive	good

* FV: femoral vein, JV: jugular vein

Modifications during pre-clinical study

Hook block for controlled deployment

Hook block

Modifications during pre-clinical study

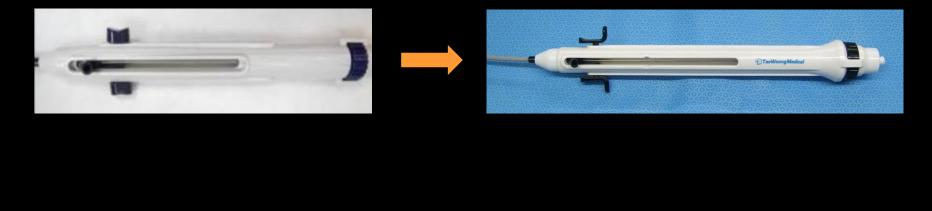
Stent type modification (D type M type)

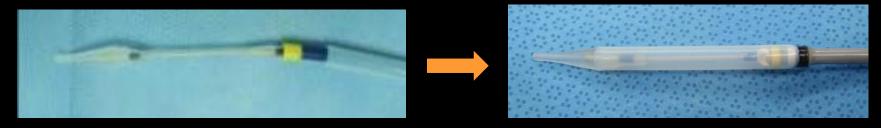
Туре

Wire thickness Delivery system Valve Wall

Diameter x Total Length

Radial Force


D type


Can be folded in longitudinal axis o.oo8 inch (o.2mm) 18Fr Full 20 mm x 24 mm 22 mm x 25 mm 24 mm x 28 mm 26 mm x 33 mm o.17~0.20 kgf M type No folding in longitudinal axis 0.010 inch (0.25mm)

19Fr Partial 20 mm x 30 mm 22 mm x 33 mm 24 mm x 36 mm 26 mm x 38 mm 0.40~0.5 kgf

Modifications during pre-clinical study

 delivery sheath modification : handle, shaft's material and color

New trials

Per-ventricular pulmonary valve implantation

- Lateral thoracotomy
- RV per-string at the RV anterior wall

- 6 cases : deployed at the good position in all
 - I sheep died after sternal closure due to coronary compression from coronary anomaly

Conclusions

- Transcatheter implantation of Nitinol-based self-expandable valved stent in pulmonic valve position was feasible in a preclinical animal study
 - Tissue valve durability should be validated more
 - : <u>6 months result</u> was satisfactory
 - : <u>anticoagulation and other supportive measures</u> will be beneficial for longer durability in the human clinical study
 - Stable deployment should be validated more
 - : <u>TEE, biplane fluoroscope and hook block</u> could be helpful definitely in the clinical study
- Now, we are planning to do clinical study